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Spectral-Domain Analysis of Shielded Microstrip

Lines on Biaxially Aaisotropic Substrates

T. Q. Ho and B. Beker

Abstract —The spectral-domain technique has been extended to the

study of shielded mierostrip lines on bkixial substrates. The analysis
simultaneously includes both dielectric and magnetic anisotropy effects.
A fourth-order formulation leads to the determiuation of the appropr+

ate Green’s function for the structure. The characteristic equation is
formed through the application of the Galerkin method to the equations

resulting from the boundary conditions on the strip. Numerical results

are validated against the data previously published for special isotropic
and dielectrically anisotropic cases. New data on the propagation con-
stant of the shielded microstrip with different substrate perrnittivities
and permeabilities are presented to illustrate the effects of the material
parameters on the characteristics of the microstrip tine.

I. INTRODUCTION

In recent years there has been a steadily growing interest in

anisotropic materials for practical uses at millimeter-wave fre-
quencies. The wide variety of possible applications for such
media include antenna radomes, substrates for microstrip patch
antennas, microwave and millimeter-wave integrated circuits
(MIC’S), and ferrite nonreciprocal devices. As is well known, the
anisotropy in the material may occur naturally or it may be
purposely implanted during the fabrication process. In either
case, and in particular for MIC’S, anisotropic properties of
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substrates must be included in the analysis, for otherwise serious
errors in their design can occur.

Since the early works of Owens and Edwards [1], [Z], a
number of authors have developed different analytical methods
for studying transmission lines on anisotropic media. Annong

these are Afexopolous [3], [4], Homo [5], and Koul et al. [6], who

used the quasi-static approach to study such problems, while

others, among them E1-Sherbiny [7], Kobayashi [8], Yang etal.

[9], and Krowne et al. [10], sought full-wave solutions. Afthough

numerous additional works dealing with anisotropic structures

are available and are well documented in the literature, the

major effort thus far has been directed toward transmission nines

with dielectrically anisotropic media. Until now, only a few

treatments have been devoted to lines on substrates that are

characterized by both [E] and [K] tensors. In one of them,

Mariki et al. [11] applied the transmission line matrix methc~d to

analyze a shielded line on anlsotropic substrate. However, no

data for magnetic anisotropy effects on propagation constants

were provided in that study. On the other hand, for an open

structure, Tsalamengas et al. [12] used a semianalytical tech-

nique which can be used for substrates that are characterized by

all nine elements of permittivity and permeability tensors.

In this paper, the spectral-domain method is extended to, the

study of shielded microstrip lines on biaxially dielectric and

magnetic anisotropic substrates. The solution to Maxwell’s equa-

tions, which for this problem reduces to two coupled second-

order differential equations and eventually to two uncoupled

fourth-order equations for two components of the electric field,

leads directly to the determination of Green’s function for the

structure. The derivation of the characteristic equation for the

propagation constant is carried out using Galerkin’s technique

in the Fourier domain. To demonstrate numerical efficiency of

the spectral-domain approach, results for the convergence stud-

ies are included along with samples of the time required for the

execution of the code. Numerical results calculated by this

meth,od for isotropic as well as dielectrically anisotropic sub-

strates are compared with the existing data, and in both cases a

very good agreement is observed. New data for the propagation

constant of the shielded lines on substrates simultaneously char-

acterized by different values of [e] and [K] are also generated.

II. ANALYTICAL FORMULATION

Consider the geometrj shown in Fig. 1, which illustrates the

cross section of the shielded microstrip line situated inside a

metal housing along with the coordinate system used in the

analysis. Furthermore, the cross section of the structure is

assumed to be uniform in the z direction. The metal strip is

taken as perfectly conducting and infinitely thin in the x direc-

tion. The lossless substrate, which has thickness hl and width b,

is characterized by homogeneous biaxial permittivity and perme-

ability tensors having the following forms:
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Fig. 1. Cross section of covered microstrip geomehy.

where .sOand ~0 denote the free-space values of the permittivity

and permeability, respectively.

The spectral representation of the field may be obtained via

the transform,

where a is the discrete transform variable, with values
~ = (2n – 1)7 i b allowed for E= even– Hz odd modes and

a = (2nm)/ b restricted to the E= odd– Hz even modes defined

within the guide.

Maxwell’s curl equations in the spectral space produce a pair

of coupled second-order differential equations for ~z and ~Y.

Decoupling of this set is possible and leads to yet another, but

independent, pair of fourth-order equations for these compo-

nents of the electric field, i.e.,

d4 d2 .

>~z,y +fl-@z, y +fz~z, y ‘o (3a)

wherein the constants fl and fz are given by

fl = @(~zzPy,+ fy,wzz)– P2(~zz/f.x – /Jzz//J..)

—~2(Pyy/’Pxx+ ~yy/~,u ) (3b)

f2 = {(~!%yy~zz – B2~zz/~xx – @zwyy /Pxx)

(~:wzz.,y - P2wzz/Pxx - ~2.,y/~xx)

- (@)2(w,y /kxx – ‘,, /’..)

“(wzz/wxx -~zz/’%x)}. (3C)

The boundary conditions which require the tangential electric

fields to vanish at the bottom (ground) plane x = – hl lead to

the general solution to (3a), which in an anisotropic region may

be written as

~j(x, a)=~~siny~(x +hl)+l? ~siny~(x+hl) (4a)

with the remaining transformed field components related to ~z

and ~X in the following way:

fij(x,a) = –(e2)-1{(d2/dx2 )fi~(x, a)+elfi~(x, a)} (4b)

{

dti;(x, a)
fi;(x, a)=-(f3)-1 dx +jai;(x, a)

}

(

d~:(x, a)
H;(x, a)=(f4)-1 dx +jpi:(x, a)

}

(4C)

(4d)

/

f,qf:-4f2)”2
Y;>Y: =

2
(4e)

e~ = kbyy~zz – fi2ezz/6xx – a’pyy /pXX (4f)

(4g)
( P’.. ~xx J

Note that the field component fi~ can be determined by using

two different methods. One way is to use the divergence equa-

tion, from which ~~ is obtained by integrating the resulting

equation after substituting for ~~ and ~~ into the expression for

Gauss’s law and then enforcing the appropriate boundary condi-

tions at x = O. The other way is to use the curl equations, from

which, after some manipulations, ~~ can be expressed in terms

of the derivatives of ~~ and ~~. Finally, the remaining terms

appearing in (4) are the constants f3 = (j@wow.. )-’ and fl=
(jo,uowyy)- 1, y; and Y?, which are separation constants in the

x direction, and the corresponding modal amplitudes A;

and B;.

The fields within the isotropic space, i.e., region 2, fi~(x, a),

fi~l(x, a), fi~I(x, a), and ~~I(x, a), are just a linear superposi-

tion of the T-E and TM mod’es which have already been derived,

and whose expressions are available in [9]. WJhen boundary

conditions are enforced at x = O in the Fourier domain and are

followed by some mathematical manipulations, they lead to a

coupled equation set for the two current components ~y and ~Z;

izz(a, B)~(a)p) +~zy(~>P)f,(~>B) =~z.,(~) (Sa)

z,z(a, ~)iz(a,p)+zyy(a,~)fy(~>~) = %(~) (Sb)
where Ez~ and ~y~ are the tangential fields evaluated at the

substrate–air bounda~. In the above equations, the elements of

the impedance matrix function can be expressed as

Zzz(a, fJ)=fJa,~)/A (6a)

~zy(a,~) = –~y(a, ~)\A (6b)

iyz(a,~) = –fyz(a, ~)\A (6c)

iyy(a, (3)= iJa,P)/A (6d)

A = YYYYZZ– YYZYZY (6e)

wherein the corresponding elements of the admittance matrix

can be explicitly defined as

fyy(a, @=pscot(y2h2)

–pqcot(y~hl)/pll + p3cot(y~hl)/pll (7a)

Yzy(a, p) = +P7cot(Y2~2) +P2c’ot(Yflzl),/Plo

–Plcot(Y!~l)/Plo (7b)

fyz(a’, p) = +P7cot(Y2Q+P 4P5cc X( Y:~l)/Pll

‘p@6c0t(?f~l)/pll (7C)

izz(a, B)=p9cot(Y2h2) –P2P5cot(Y:ltl) /Plo

‘p1p6c0t (@h)\p10 (7d)
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The constants p appearing in (7) are given by

P3 = – f4~P5~yy /~., + &z,/~..)/Y: - P,Y! (8c)

pzf = – ~(ffp6Eyy/cxx + &zz/E.x)/yi’ – p6y? (8d)

( )P5= (14)2– el /e2 (8e)

p6=((~f)2–el)/e2 (8f)

P7=@/Y2 (8g)

p8=(k; –~2)/y2 (8h)

p9=(k&a2)/y2 (8i~

P1o = (P6 – p5)/~YY (80

PII = (p6 – p5)/14,, (Sk)

where y2 denotes the separation constant in the x direction for

region 2 and k. is the wavenumber of free space. Notice that

~z~ and ~Y, appearing in equations (5) are the unknowns at

x = O for w/2 < Iy[ < b/2, but they are zero on the metal strip.

As a result, a numerical solution to these equations can be

obtained by using the technique which has been illustrated in

[13]. The four unknowns contained therein are ~Z,, ~,,, ~, and

.TY, where the former two can be eliminated by applying the

Galerkin metQod in t~e Fourier domain. Specifically, to do this,

the currents JY and J= are expanded in terms of basis functions

~Y~ and ~z~, which in this case are chosen to be

~=1
(9a)

(9b)
~=1

but wherg expansion constants Cm and Dm are still unknown.

The basis functions must be taken such that they will satisfy the

current boundary conditions; namely they must be singular at

edges of the metal strip, i.e.,

J2m(Y)= [COS{2(~- I) TY/W}]/[1-(2Y/W) 2]1”,

~=l,z,... (lOa)

Jym(Y)=[sin{2(~)~y/~}]/[1-(2y/w)2]1’2,
~=lz,.... (lOb)

The matrix system can now be formed by substituting expan-

sions [9) into equations (5) and taking the inner products with

~Y, and ~z, for different values of the index i, so that the final

form of these equations is given by

wherein the right-hand sides are zero by virtue of Parseval’s

theorem. Numerical solution of simultaneous equations (11)

provides the propagation constant in the z direction, ~, which is

obtained by setting the determinant of the coefficient matrix

equal to zero and searching for the root of the resulting equa-

tion.

111. NUMERICAL RESULTS

To validate the theory presented in this paper, effective

dielectric constants are computed for two different types of

substrates and are compared with previously published data. In

the first case, the selected material is isotropic, with medium

parameters 6XX = eYY = ~ZZ = 8.875 and P,,X = pYY = FZZ =’ 1.0;

the physical dimensions of the waveguide housing and the strip

are taken to beb = 12.7 mm, i?l = 1.27 mm, k2 = 11.43 mm, and

w = 1.27 mm. A convergence check for this structure is per-

formed by increasing the number of spectral terms as well as the

matrix size. The computed data show that a matrix size as small

as M = N = 1 and n = 150 terms yields a good result. Specifi-

cally, for this case the propagation constant /3 for n ==250

converges to its final value as 1.135615, 1.135451, 1.135450, and

1.135451 for N = M = 1, 2, 3, and 4, respectively. The corre-

sponding values of the effective dielectric constant when N =

M = 1 and n = 250 are shown in Fig. 2 versus frequency ranging

from dc to 20.0 GHz. The data from [13] are also reproduced to

show that good agreement is obtained, which is expected since

the Green’s function used in [13] and [14] is exactly identical to

the one presented here when it reduces to the isotropic case.

Also shown in this figure is another comparison between results

computed by the present method and those obtained via the

hybrid mode technique [7]. In this case, sapphire is used as a

substrate for the microstrip. For this material, the reli~tive

permittivity and permeability parameters are CXX= 11.6, .s~~ =

c== = 9.4, and pXX = WYY= p=== 1.0, respectively. The effective

dielectric constant, ●,ff, is once again computed versus fre-

quency for up to 50.0 GHz, and excellent agreement between

the two methods is observed throughout the selecte-d frequency

range.

The computations are then extended to the microstrip line on

a dielectrically biaxial material, with the substrate being the

PT~E cloth. The corresponding geometrical parameters of the

structure are chosen as b = 12.7 mm, h ~= 0.50 mm, and 1?2=

12.20 mm and the substrate material is characterized by 6X.=

2.45, ●YY= 2.89, e== = 2.95, and Px,, = WYY= WZZ= 1.0. For this

type of cloth, Fig. 3 shows the behavior of ●eff for different

w /hl ratios as the frequency increases up to 50.0 GHz and

where the effective dielectric constant exhibits only a small

variation over the computed frequency band. On the ether

hand, for the glass cloth, which is characterized by .sl,, = 6.24,

CYY= 6.64, and e== = 5.56, eeff is noticeably more sensitive to

changes in the frequency, and as a result it varies more rapidly

than in the previous case of the PTFE cloth, as indicated in

Fig. 4.

To illustrate the general applicability of the approach pre-

sented in this paper, the propagation constant B (B2 = e.ff k,i) of

the microstrip line printed on a substrate that is characterized

by ●z. = 2.0, ~,, = 2.35, and ●..= 3.5 and several different

combinations of the tensor elements of [p] is presented’ in Fig.

5. The curves are generated to show explicitly the magnetic

anisotropy effects on the propagation constant. For values of

pXl, p,,, and p,= increasing from 2.75, 2.25, 5.0 to 4.25, 3.75,

6.5, as indicated by letters A through D in Fig. 5, the calculated

propagation constant ~ is clearly sensitive to variations in ele-
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Fig. 2. Effective dielectric constant versus frequency. A: Isotropic with

b = 12.7 mm, hl= 1.27 mm, hz = 11.43 mm, w = 1.27 mm, ~11 = ●YY=

e== = 8,875, and pzx = PYY = w.. = 1.0. ~: Sapphire with w’/h I = 1.0,
hl = 0.5 mm, c., = 11.6, e,Y = ●zz = 9.4, and Wxx = KYY = ,uZ= = 1.0.
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Fig. 3. Effective dielectric constant versus frequency of a line on
PTFE cloth with b = 12.70 mm, hl = 0.50 mm, /zz = 12.20 mm, e,, = 2.45,

.s,, = 2.89, 6=== 2.95, and pxx = ~,, = p,== 1.0.

ments of [W] beyond the frequency of 12.50 GHz. Results of Fig.

5 reaffirm the fact that, as expected, the anisotropy effects,

whether electric or magnetic, are amplified at higher frequen-

cies and must be taken into account in the design of high-

frequency circuits.

As a final note, it should be added that all calculations of the

data presented in this paper were carried out by using the 25

MHz AT-compatible 486 PC. Typical computation times for a

single frequency point using 250 spectral terms are 2.7 s, 3.0 s,

3.5 s, and 3.9 s respectively for matrix sizes of N = M =1,

N = M = 2, N = M = 3, and N = M = 4, which demonstrates the

practicality of the spectral-domain method in the numerical

analysis of MIC’S.

IV. CONCLUSION

The spectral-domain method has been applied to an analysis

of a shielded microstrip line on a biaxial ;anisotropic substrate

which takes into account both dielectric and magnetic anisotropy

effects, which are very important in high-frequency applications.

The characteristic equation for the propagation constant used to

I W/Hl=4 .0 \ 1

i6”*
w
El
k
w 4-

W/Hl=l .0

I W/Hl=O .1

1
2< A

o 10 20 30 40 50

FIU3QUENCY ( GHZ)

Fig. 4. Effective dielectric constant versus frequency of a line on glass
cloth with b = 12.70 mm, hl = 0.50 mm, h2 = 12.20 mm, ●x, = 6.24,

●YY = 6.64, ●,, = 5.56, and pxx = yYY = pzz = 1.0.

3j I

“o 10 20 30 40 50

FREQUENCY ( GHZ )

Fig. 5. Propagation constant versus frequency with b = 12.70 mm,

hl = 0.50 mm, hz = 12.20 mm, w = 0.500 mm, Cxl = 2.0, .sYY= 2.35, and
c== = 3.50. A: Kxz = 2.75, ~YY = 2.25, and ~zz = 5.00. B: KY. = 3.25,
pY,, = 2.75, and K,, = 5.50. C: px. = 3.75, p),Y = 3.25, and p,, = 6.00
D: Wt. = 4.25, KYY = 3.75, and K=== 6.50.

obtain Ceff is formed by applying the Galerkin technique in the

Fourier domain. The calculated effective dielectric constants for

two special validation cases are shown to be in good agreement

with those computed using other methods. To demonstrate the

versatility of this approach, numerical results for the microstrip

line on a substrate that is characterized simultaneously by differ-

ent [e] and [p] are presented which clearly convey the impor-

tance of all tensor parameters, especially when MIC’S operate at

higher frequencies.
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Frequency-Dependent Characteristics of Shielded

Broadside Coupled Microstrip Lines

on Anisotropic Substrates

T. Q. Ho and B. Beker

Abstract —In this paper, a spectral-domain technique is applied to

compute the propagation characteristics of a shielded broadside coupled

microstrip line printed on homogeneous uniaxial and biaxial substrates.
The formulation derives the Green’s functions for even and odd modes

of the guiding structure via the transformed fourth-order differential
equations. The analysis includes anisotropic substrates which are simul-

taneously characterized by both [d and [PI tensors. This rigorous

full-wave approach to the solution of the problem is shown to yield
results agreeing well with the existing data. The propagation character-
istics are stud]ed with respect to different line width/thickness ratios as

well as to the material substrate parameters.
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I. INTRODUCTION

Among the various E-plane transmission line structures avail-

able for practical applications at microwave and millimeter-wave

frequencies, the broadside coupled microstrip line is one of the

most commonly used. In order to accurately design MIC circuits

using this structure, the effect of dispersion should be carefully

considered, One of the first studies of a broadside coupled

microstrip line on isotropic substrates was carried out by Allen

et al. [1].Subsequently, Bornemann [2] also examined the disper-

sion characteristics of similar structures, however, without pro-

viding numerical results for the even-mode case. More recently,

Mizuno et al. [3] have studied the same structure using a

rigorous analysis to calculate dispersion properties of both the

even and odd modes.

While isotropic media are frequently employed as substrates

in circuits of this type, at higher frequency they may exhibit

anisotropic properties as well. To account for such effects,

D’Assungaso et al. [5] have used the method of moments to

study the broadside coupled line with no sidewalls on anisotropic

substrates. However, this approach is quasi-static, so the results

are limited to low frequencies. As an alternative, Koul et al. [6]

presented a technique which is based on the transverse trans-

mission line method for analyzing broadside coupled circuits of

this kind using anisotropic media. Unfortunately, in all of the

aforementioned works, the formulation of the problem corlsid-

ered materials characterized by tensor permittivity alone, and, in

some cases, the analysis was further restricted to uniaxial sub-

strates.

In this paper, the spectral-domain method is extended to

study a shielded broadside coupled microstrip line along the E

plane of the waveguide printed on anisotropic medium. The

problem is generalized so that both dielectric and magnetic

anisotropy effects are included in the formulation. The analysis

is rigorously performed so that accurate full-wave solutions may

be obtained. The two transformed fourth-order differential

equations, which can be obtained from Maxwell’s curl equations,

‘yield solutions that lead to the derivation of the Green’s func-

tions for both the even- and the odd-mode case. The character-

istic equation for the propagation constant is formed by applying

the Galerkin method in the Fourier transform domain. Nunleri-

cal results for the broadside coupled line are computed for a

special isotropic case and are compared with the ones obtained

in [3]. Good agreement for the effective dielectric constant is

observed in the computed data throughout the selected w/b

(strip-guide width) range. Additional examples exhibiting the

behavior of the effective dielectric and propagation constants of

the line on various anisotropic substrates including sapplhire,

boron nitride, filled PTFE (glass cloth), PTFE cloth, and lithium

niobate are also presented.

II. FORMULATION

The broadside coupled microstrip line structure, shown in Fig.

l(a), consists of a thin substrate material layer characterized by

both [c] and [w] biaxial tensors which is suspended inside a

metal housing with dimensions a and b. The substrate, of

thickness 2hl, is assumed to be lossless and is uniformly ex-

tended in the z direction. To simplify the ,analysis, the metal

strips whose width is w are also assumed to be perfectly con-

ducting and infinitely thin in the x direction. The medium

properties of the substrate are characterized by diagonal bi:mial
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