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Spectral-Domain Analysis of Shielded Microstrip
Lines on Biaxially Anisotropic Substrates

T. Q. Ho and B. Beker

Abstract —The spectral-domain technique has been extended to the
study of shielded microstrip lines on biaxial substrates. The analysis
simultaneously includes both dielectric and magnetic anisotropy effects.
A fourth-order formulation leads to the determination of the appropri-
ate Green’s function for the structure. The characteristic equation is
formed through the application of the Galerkin method to the equations
resulting from the boundary conditions on the strip. Numerical results
are validated against the data previously published for special isotrepic
and dielectrically anisotropic cases. New data on the propagation con-
stant of the shielded microstrip with different substrate permittivities
and permeabilities are presented to illustrate the effects of the material
parameters on the characteristics of the microstrip line.

I. INTRODUCTION

In recent years there has been a steadily growing interest in
anisotropic materials for practical uses at millimeter-wave fre-
quencies. The wide variety of possible applications for such
media include antenna radomes, substrates for microstrip patch
antennas, microwave and millimeter-wave integrated circuits
(MIC’s), and ferrite nonreciprocal devices. As is well known, the
anisotropy in the material may occur naturally or it may be
purposely implanted during the fabrication process. In either
case, and in particular for MIC’s, anisotropic properties of
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substrates must be included in the analysis, for otherwise serious
errors in their design can occur.

Since the early works of Owens and Edwards [1], [2], a
number of authors have developed different analytical methods
for studying transmission lines on anisotropic media. Among
these are Alexopolous [3], [4], Horno [5], and Koul et al. [6], who
used the quasi-static approach to study such problems, while
others, among them El-Sherbiny [7], Kobayashi [8], Yang et al.
[9], and Krowne et al. [10], sought full-wave solutions. Although
numerous additional works dealing with anisotropic structures
are available and are well documented in the literature, the
major effort thus far has been directed toward transmission lines
with dielectrically anisotropic media. Until now, only a few
treatments have been devoted to lines on substrates that are
characterized by both [e] and [u] tensors. In one of them,
Mariki et al. [11] applied the transmission line matrix method to
analyze a shielded line on anisotropic substrate. However, no
data for magnetic anisotropy effects on propagation constants
were provided in that study. On the other hand, for an open
structure, Tsalamengas et al. [12] used a semianalytical tech-
nique which can be used for substrates that are characterized by
all nine elements of permittivity and permeability tensors.

In this paper, the spectral-domain method is extended to the
study of shielded microstrip lines on biaxially dielectric and
magnetic anisotropic substrates. The solution to Maxwell’s equa-
tions, which for this problem reduces to two coupled second-
order differential equations and eventually to two uncoupled
fourth-order equations for two components of the electric field,
leads directly to the determination of Green’s function for the
structure. The derivation of the characteristic equation for the
propagation constant is carried out using Galerkin’s technique
in the Fourier domain. To demonstrate numerical efficiency of
the spectral-domain approach, results for the convergence stud-
ies are included along with samples of the time required for the
execution of the code. Numerical results calculated by this
method for isotropic as well as dielectrically anisotropic sub-
strates are compared with the existing data, and in both cases a
very good agreement is observed. New data for the propagation
constant of the shielded lines on substrates simultaneously char-
acterized by different values of [e] and [x] are also generated.

II. ANALYTICAL FORMULATION

Consider the geometry shown in Fig. 1, which illustrates the
cross section of the shielded microstrip line situated inside a
metal housing along with the coordinate system used in the
analysis. Furthermore, the cross section of the structure is
assumed to be uniform in the z direction. The metal strip is
taken as perfectly conducting and infinitely thin in the x direc-
tion. The lossless substrate, which has thickness A, and width b,
is characterized by homogeneous biaxial permittivity and perme-
ability tensors having the following forms:

€, 0O 0
[e]=€| O €, O (1a)
0 0 €,
Bee 00
[n]=no 0 Hyy 0 (1b)
0 0 u,
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Fig. 1. Cross section of covered microstrip geometry.

where €, and u, denote the free-space values of the permittivity
and permeability, respectively.

The spectral representation of the field may be obtained via
the transform,

d(x,a)= [ D(x,y)e dy (2)
-b/2

where o« is the discrete transform variable, with values
a=Qn—-1)7/b allowed for E, even-H, odd modes and
o =Q2nw)/b restricted to the E, odd- H, even modes defined
within the guide.

Maxwell’s curl equations in the spectral space produce a palr
of coupled second-order differential equations for E and E
Decoupling of this set is possible and leads to yet another, but

independent, pair of fourth-order equations for these compo-
nents of the electric field, i.e.,

d4 d?
dx4 yt f1 —E,, y T f2E. =0 (3a)
wherein the constants f; and f, are given by
Frkg(ezatyy teyyt) = B2 (Con/Cox — Bz / Bony)
=0y /Bt €y /€0 (3b)

f2 = {(k(z)MYYGZZ - ﬁzezz /Exx - azl-l'yy /luxx)

2
! (kOIu’zzEyy - Bz/“l’zz /lu’xx - azeyy /Exx)

- (aﬁ)z(ﬂyy //‘LX)C - Eyy /EXX)
.(Mzz/lu’xx_ezz/exx)}' (3(:)
The boundary conditions which require the tangential electric
fields to vanish at the bottom (ground) plane x = — k; lead to

the general solution to (3a), which in an anisotropic region may
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be written as

El(x,a) = A%siny®(x + h))+ B¥siny?(x + k) (4a)
with the remaining transformed field components related to E
and E in the following way:

ElNx,a)=—(ey) {(d?/adx®)EN(x,a) + e, EX(x,@)} (4b)

- dE! , .
Hzl(x’a)=“(f3)1{y(d—;€)+faE§(x,a)} (4¢)
% -1 dEg(x’“) oA
Hy(x,e) =(fs) {T+JﬂE§(x,a)} (4d)
2_4 1/2
o D24 "
el=k(%lu‘yyezz_Bzezz/exx_azl‘l’yy/lu‘xx (4f)
Myy Eyy
ez=(————)aﬁ. (4g)
I'LXX exX

Note that the field component E; can be determined by using
two different methods. One way is to use the divergence equa-
tion, from which E, =1 is obtained by integrating the resulting
equation after substituting for £, 71 and EI into the expression for
Gauss’s law and then enforcing the appropriate boundary condi-
tions at x = 0. The other way is to use the curl equations, from
which, after some manlpulatlons E, =1 can be expressed in terms
of the derivatives of E Iand E;. o Finally, the remaining terms
appearing in (4) are the constants f;=(jopu,,)” ! and f,=
(jomop,,) ", y{ and y?, which are separation constants in the
x direction, and the corresponding modal amplitudes A%
and BF.

The fields within the isotropic space, i.e., region 2, E II(x a),
EN(x,a), HM(x,a), and H™(x,a), are just a linear superposi-
tion of the TE and TM modes which have already been derived,
and whose expressions are available in [9]. When boundary
conditions are enforced at x =0 in the Fourier domain and are
followed by some mathematical manipulations, they lead to a
coupled equation set for the two current components fy and fz:

Z.(a,B)] (. B)+ Z.,(a,B)] (e, B) = E. (@) (S5a)
Z,(a.B) (. B)+ Z,,(a,B),(a.B)=E,(a) (5b)
where E_, and Eys are the tangential fields evaluated at the

substrate—air boundary. In the above equations, the elements of
the impedance matrix function can be expressed as

Z,.(a,B)=Y,,(a,8)/A (62)
Z.(a,B)=—Y, (a,8)/A (6b)
Z,(a,B)=—Y, (a,B)/A (6¢)
Zyy(a B)=Y,.(a,8)/A (6d)

A=Y, Y,. -7, (6¢)

wherein the corresponding elements of the admittance matrix
can be explicitly defined as

);yy(a,ﬁ) = pgcot(y,hy)
— pacot(yihy)/ P+ ps COt(Ylbh1)/P11 (7a)
Y, (a,B) =+ pscot(y,h,) + pycot (vihy) /pro

“17100t(7fh1)/1710 (7b)
Y,.(@,B) =+ pycot(vh,) + pypscot (vih,) / pyy

—p3p600t(7fh1)/p11 (7¢)
Y,.(@,B) = pycot (y,h2) = pypscot(yihy)/prg v

+ p1scot (yihy)/ pyg. (7d)
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The constants p appearing in (7) are given by
»= 7%7 + B(aPSEyy/Exx + Bezz/e)cx)/'yi7

(8a)

Pz='Yf+B(0‘P6€yy/€xx+B5zz/€xx)/')’f (Sb)
ps=—a(apse,, /€., +Be., /€..)/vi —psy]  (8¢)
pa=—a(apse,, /et Be,. /e, )/¥i— Doy  (8d)
Ds= ((Yf)z_ el)/eZ (8e)
pe=((¥D)’-e1)/e: (81)
pr=aB/v, (8g)
ps=(k§—B*)/7: (8h)
p9=(k8—a2)/72 (8i)
P10=1(Ds = Ps)/ 1y, (8)
P11=(Ps— Ds)/thz: (8k)

where vy, denotes the separation constant in the x direction for
rggion 2 and k, is the wavenumber of free space. Notice that
E,, and Iz:ys appearing in equations (5) are the unknowns at
x=0for w/2 <|yl <b /2, but they are zero on the metal strip.
As a result, a numerical solution to these equations can be
obtained by using the technique which has been illustrated in
[13]. The four unknowns contained therein are E,, Ezy, J,, and
J,, where the former two can be eliminated by applying the
Galerkin method in the Fourier domain. Specifically, to do this,
the currents fy and J, are expanded in terms of basis functions

fym and J,,, which in this case are chosen to be

zm?

I(n)= % SCoid () (92)
m=1

(9b)

but wherg expansion constants C,, and D,, are still unknown.
The basis functions must be taken such that they will satisfy the
current boundary conditions; namely they must be singular at
edges of the metal strip, i.e.,

T,(3) =[eos (2(m =1y /) ) [1- @y /wy] ",

~ M ~
Jy(n)= Z DmJym(n)
=1

m=1,2,--- (10a)
Jom(¥) =[sin{2§m)~n'y/W}]/[1*(ZY/W)Z] 1/2,
m=1,2,---. (10b)

The matrix system can now be formed by substituting expan-
sions (9) into equations (5) and taking the inner products with
fy, and J,, for different values of the index i, so that the final
form of these equations is given by

N ®

Z — fzi(n)zzz(n’ﬁ)‘fzm(n)cm

m=1n=
M o B .
+ Z ZJzz(n)Zzy(n>B)Jym(n)Dm=07
i=1,2,-,N (l1a)

% (M2, (1B (WG,

% 5(m)Z,y(m)n(m) D =0

i=1,2,---,M (11b)
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wherein the right-hand sides are zero by virtue of Parseval’s
theorem. Numerical solution of simultaneous equations (11)
provides the propagation constant in the z direction, 8, which is
obtained by setting the determinant of the coefficient matrix
equal to zero and searching for the root of the resulting equa-
tion.

II1. NuMmERicAL RESuLTS

To validate the theory presented in this paper, effective
dielectric constants are computed for two different types of
substrates and are compared with previously published data. In
the first case, the selected material is isotropic, with medium
parameters €,, =€, =¢€,,=8875 and p ,=p,, =p,. =10
the physical dimensions of the waveguide housing and the strip
are taken to be b =12.7 mm, h; =1.27 mm, s, =11.43 mm, and
w=1.27 mm. A convergence check for this structure is per-
formed by increasing the number of spectral terms as well as the
matrix size. The computed data show that a matrix size as small
as M=N=1 and n=150 terms yields a good result. Specifi-
cally, for this case the propagation constant B for n =250
converges to its final value as 1.135615, 1.135451, 1.135450, and
1.135451 for N=M =1, 2, 3, and 4, respectively. The corre-
sponding values of the effective dielectric constant when N =
M =1 and n = 250 are shown in Fig. 2 versus frequency ranging
from dc to 20.0 GHz. The data from [13] are also reproduced to
show that good agreement is obtained, which is expected since
the Green’s function used in [13] and [14] is exactly identical to
the one presented here when it reduces to the isotropic case.
Also shown in this figure is another comparison between results
computed by the present method and those obtained via the
hybrid mode technique [7]. In this case, sapphire is used as a
substrate for the microstrip. For this material, the relative
permittivity and permeability parameters are €,, =11.6, €,, =
€,,=94,and u, =p,, =p,, =10, respectively. The effective
dielectric constant, e, iS once again computed versus fre-
quency for up to 50.0 GHz, and excellent agreement between
the two methods is observed throughout the selected frequency
range.

The computations are then extended to the microstrip line on
a d’ielectrically biaxial material, with the substrate being the
PT?E cloth. The corresponding geometrical parameters of the
structure are chosen as b=12.7 mm, s, =0.50 mm, and h, =
12.20 mm and the substrate material is characterized by €,, =
245, ¢,,=289, ¢€,,=295 and p,, = pu,,=p,, =10. For this
type of cloth, Fig. 3 shows the behavior of e for different
w/h, ratios as the frequency increases up to 50.0 GHz and
where the effective dielectric constant exhibits only a small
variation over the computed frequency band. On the other
hand, for the glass cloth, which is characterized by €, = 6.24,
e,,=6.64, and ¢€,, =5.56, €. is noticeably more sensitive to
changes in the frequency, and as a result it varies more rapidly
than in the previous case of the PTFE cloth, as indicated in
Fig. 4.

To illustrate the general applicability of the approach pre-
sented in this paper, the propagation constant 8 (8% = e ;k3) of
the microstrip line printed on a substrate that is characterized
by e,,=20, €,=235 and €. =35 and several different
combinations of the tensor elements of [x] is presented in Fig.
5. The curves are generated to show explicitly the magnetic
anisotropy effects on the propagation constant. For values of
Bogys My, and p . increasing from 2.75, 2.25, 5.0 to 4.25, 3.75,
6.5, as indicated by letters A through D in Fig. 5, the calculated
propagation constant B is clearly sensitive to variations in ele-
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Fig. 2. Effective dielectric constant versus frequency. A: Isotropic with
b=12.7 mm, by =127 mm, h, =11.43 mm, w=1.27 mm, €,, =€, =
€,.=8875 and u,,=u,,=pu,,=10. B: Sapphire with w/h =10,
hy=05mm, e,, =116, €,,=¢,, =94, and p,, = p,, = p,, =10.
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Fig. 3. Effective dielectric constant versus frequency of a line on
PTFE cloth with b =12.70 mm, h; = 0.50 mm, A, = 12.20 mm, €, , = 2.45,
€,,=2.89, €,,=295, and p,, =p,, =n,,=10.

ments of [u] beyond the frequency of 12.50 GHz. Results of Fig.
5 reaffirm the fact that, as expected, the anisotropy effects,
whether electric or magnetic, are amplified at higher frequen-
cies and must be taken into account in the design of high-
frequency circuits.

As a final note, it should be added that all calculations of the
data presented in this paper were carried out by using the 25
MHz AT-compatible 486 PC. Typical computation times for a
single frequency point using 250 spectral terms are 2.7 s, 3.0 s,
3.5 s, and 3.9 s respectively for matrix sizes of N=M =1,
N=M=2 N=M=3,and N= M = 4, which demonstrates the
practicality of the spectrdl-domain method in the numerical
analysis of MIC’s.

IV. ConNcLusion

The spectral-domain method has been applied to an analysis
of a shielded microstrip line on a biaxial anisotropic substrate
which takes into account both dielectric and magnetic anisotropy
effects, which are very important in high-frequency applications.
The characteristic equation for the propagation constant used to
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Fig. 4. Effective dielectric constant versus frequency of a line on glass
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Fig. 5. Propagation constant versus frequency with b=12.70 mm,
h1 0.50 mm, #,=12.20 mm, w = 0.500 mm, ¢,, =20, €,, =2.35, and

=3.50. 4: p,, =275, u,, =225, and p,ZZ—SOO B ,u,u—325
,uy‘~775 and u,. =5.50. C: ,uxx—375 My, =325, and p,,=6.00
D, =425 p,, =375 and u,, =6.50.

obtain e, is formed by applying the Galerkin technique in the
Fourier domain. The calculated effective dielectric constants for
two special validation cases are shown to be in good agreement
with those computed using other methods. To demonstrate the
versitility of this approach, numerical results for the microstrip
line on a substrate that is characterized simultaneously by differ-
ent [e] and [u] are presented which clearly convey the impor-
tance of all tensor parameters, especially when MIC’s operate at
higher frequencies.
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Frequency-Dependent Characteristics of Shielded
Broadside Coupled Microstrip Lines
on Anisotropic Substrates

T. Q. Ho and B. Beker

Abstract —In this paper, a spectral-domain technique is applied to
compute the propagation characteristics of a shielded broadside coupled
microstrip line printed on homogeneous uniaxial and biaxial substrates.
The formulation derives the Green’s functions for even and odd modes
of the guiding structure via the transformed fourth-order differential
equations. The analysis includes anisotropic substrates which are simul-
taneously characterized by both [e] and [p] tensors. This rigorous
full-wave approach to the solution of the problem is shown to yield
results agreeing well with the existing data. The propagation character-
istics are studied with respect to different line width /thickness ratios as
well as to the material substrate parameters.

Manuscript received October 15, 1990; revised January 15, 1991.

The authors are with the Department of Electrical and Computer
Engineering, University of South Carolina, Columbia, SC 29208.

IEEE Log Number 9144277.

1021

I. INTRODUCTION

Among the various E-plane transmission line structures avail-
able for practical applications at microwave and millimeter-wave
frequencies, the broadside coupled microstrip line is one of the
most commonly used. In order to accurately design MIC circuits
using this structure, the effect of dispersion should be carefully
considered. One of the first studies of a broadside coupled
microstrip line on isotropic substrates was carried out by Allen
et al. [1]. Subsequently, Bornemann [2] also examined the disper-
sion characteristics of similar structures, however, without pro- .
viding numerical results for the even-mode case. More recently,
Mizuno et al. [3] have studied the same structure using a
rigorous analysis to calculate dispersion properties of both the
even and odd modes.

While isotropic media are frequently employed as substrates
in circuits of this type, at higher frequency they may exhibit
anisotropic properties as well. To account for such effects,
D’Assuncgaso et al. [5] have used the method of moments to
study the broadside coupled line with no sidewalls on anisotropic
substrates. However, this approach is quasi-static, so the results
are limited to low frequencies. As an alternative, Koul et al. [6]
presented a technique which is based on the transverse trans-
mission line method for analyzing broadside coupled circuits of
this kind using anisotropic media. Unfortunately, in all of the
aforementioned works, the formulation of the problem consid-
ered materials characterized by tensor permittivity alone, and, in
some cases, the analysis was further restricted to uniaxial sub-
strates.

In this paper, the spectral-domain method is extended to
study a shielded broadside coupled microstrip line along the E
plane of the waveguide printed on anisotropic medium. The
problem is generalized so that both diclectric and magnetic
anisotropy effects are included in the formulation. The analysis
is rigorously performed so that accurate full-wave solutions may
be obtained. The two transformed fourth-order differential
equations, which can be obtained from Maxwell’s curl equations,

'vield solutions that lead to the derivation of the Green’s func-

tions for both the even- and the odd-mode case. The character-
istic equation for the propagation constant is formed by applying
the Galerkin method in the Fourier transform domain. Numeri-
cal results for the broadside coupled line are computed for a
special isotropic case and are compared with the ones obtained
in [3]. Good agreement for the effective dielectric constant is
observed in the computed data throughout the selected w /b
(strip-guide width) range. Additional examples exhibiting the
behavior of the effective dielectric and propagation constants of
the line on various anisotropic substrates including sapphire,
boron nitride, filled PTFE (glass cloth), PTFE cloth, and lithium
niobate are also presented.

II. FORMULATION

The broadside coupled microstrip line structure, shown in Fig.
1(a), consists of a thin substrate material layer characterized by
both [e] and [u] biaxial tensors which is suspended inside a
metal housing with dimensions a and b. The substrate, of
thickness 2h,, is assumed to be lossless and is uniformly ex-
tended in the z direction. To simplify the analysis, the metal
strips whose width is w are also assumed to be perfectly con-
ducting and infinitely thin in the x direction. The medium
properties of the substrate are characterized by diagonal biaxial
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